宁波信远齿科器械有限公司 产品碳足迹报告

产 品 名 称: _____ FG1957 钨钢破冠车针

生产者 名 称: _____宁波信远齿科器械有限公司___

核查机构名称(公章): 宁波能信科技有限公司

《二五年》

目 录

一 、	概况		2
	1.1	生产者信息	2
	1.2	产品信息	3
	1.3	量化方法	3
	1.4	报告信息	4
_,	量化	七目的	4
	2.1 总	总体目标	4
	2.2	应用意图	4
	2.3	目标受众	5
三、	量化	七范围	5
	3.1	声明单位	5
	3.2	系统边界	5
	3.3	取舍准则	6
	3.4	时间范围	7
四、	清卓	单分析	7
	4.1	数据来源说明	
	4.2	分配原则与程序	8
	4.3	清单结果及计算	
	4.4	数据质量评价	19
五、	影叫	向评价	.21
	5.1	影响类型和特征因子化选择	. 21
	5.2	产品碳足迹结果计算	21
	表 5-	-1.碳足迹计算表	. 21
六、	结身	果解释	.22
	6.1	结果说明	.22
	6.2	改进建议	23

一、概况

1.1 生产者信息

宁波信远齿科器械有限公司

统一社会信用代码: 91330205793034875K

法定代表人: 袁奕琳

单位性质:有限责任公司(自然人投资或控股)

地理位置:浙江省宁波市江北区兴甬路 128 号

成立时间: 2006年10月24日

所属行业:口腔科用设备及器具制造(C3582)

公司成立于 2006 年,致力于牙科旋转刀具的研究开发,是目前 国内最大的口腔医疗用硬质合金牙科车针研发、生产、销售企业。公 司是国内最早取得硬质合金牙科车针产品注册证的企业。

公司团队研制了高端硬质合金牙科车针的全套工艺装备,打破我国口腔行业相关高端产品全部依赖进口的局面,成为国内最大的高端硬质合金牙科车针制造商。公司科研、检测设备优良,具备极强的生产能力,建有上规模的实验室,试验条件完善。企业现有产品的技术水平、市场占有率及综合经济指标在全国同行业中处于领先地位。

公司有效专利 7 项,主持/参与制修订国家/行业标准 9 项,荣获国家高新技术企业、宁波市"专精特新"中小企业等荣誉称号。公司参与的"硬质合金绿色钎焊与界面可靠连接关键技术及应用"项目获机械工业科学技术二等奖。公司拥有 CE/FDA/ISO/日本药械准入证/医疗器械生产许可证/产品注册证等资质证书,以及多项产品专利技术。

1.2 产品信息

产品名称: FG1957 钨钢破冠车针

产品计量单位: 支

产品材质: 钨钢

车针长度: 19mm

柄部直径: 1mm

图 1-1 产品规格示意图

1.3 量化方法

根据 GB/T24067-2024《温室气体产品碳足迹量化要求和指南》、GB/T 24040-2008《环境管理.生命周期评价 原则与框架标准》、GB/T 24044-2008 《环境管理 生命周期评价 要求与指南》,本产品碳足迹评价报告涵盖以下活动:

- a) 数据与信息收集;
- b) 数据与信息管理;
- c) 产品碳足迹系统方法的审定;

d) 使用系统方法量化任何产品的产品碳足迹。

本产品碳足迹评价报告对数据收集活动进行说明,以确保数据覆盖率,并减少由于采样不正确(例如数据重复收集或数据丢失等)导致的误差。

1.4 报告信息

报告名称: FG1957 钨钢破冠车针产品碳足迹报告(CFP 报告)

编制单位:宁波能信科技有限公司

编制人员:李婕妤

审核人员: 范 敏

二、量化目的

2.1 总体目标

本次研究的总目标是结合取舍准则,通过量化 FG1957 钨钢破冠车针产品"摇篮到大门"产品生命周期的所有显著的 GHG 排放量和清除量,计算产品对全球变暖的潜在贡献,该潜在贡献以二氧化碳当量(CO₂e)表示,为公司开展持续的节能减排工作提供数据支撑。本报告的研究结果将为公司与采购商、原材料供应商的有效沟通提供良好的途径,对促进产品全供应链的温室气体减排有一定积极作用。

2.2 应用意图

- (1) 得到 FG1957 钨钢破冠车针产品的生命周期各项环境影响指标结果, 识别产品生命周期中重要的过程和改进的重点:
 - (2) 可用于上游原材料供应商的绿色制造优化沟通;
- (3) 可用于下游产品绿色设计与供应链绿色制造。可用于制造商采购时选择环境友好的厨房拉手产品;

- (4) 可用于市场宣传,展示 FG1957 钨钢破冠车针产品在资源环境 效率方面的优势,为采购商及终端消费者提供材料支持;
- (5) 可用于同行业间技术、工艺改善,帮助同行业者了解当前更为 环境友好的工艺技术,提供工业改善选择;
 - (6) 建立数据标准、积累数据基础,为持续性改善提供依据。

2.3 目标受众

本报告研究结果的潜在沟通对象包括两个群体:一是公司内部管理人员及其他相关人员,二是公司外部利益相关方,如下游采购商、地方政府和环境非政府组织等。

三、量化范围

3.1 功能单位

CFP 在产品在使用阶段的功能已知,并且可明确定义时,使用功能单位对所研究产品的定量描述,使其具有可比性。

本报告以 <u>1 支长度 19mm,柄部直径 1.6mm,头部直径 1mm 的</u> FG1957 钨钢破冠车针 为功能单位。

3.2 系统边界

本报告的系统边界为"摇篮到大门":包括原材料采购阶段、产品生产阶段、运输阶段(含原材料运输及产品厂内运输)。FG1957钨钢破冠车针产品系统边界见下图。

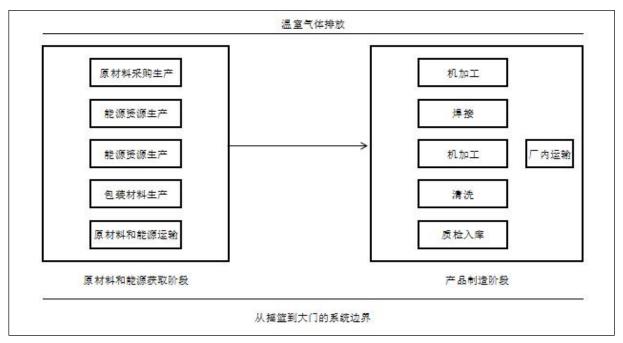


图 3-1 产品系统边界图

3.3 取舍准则

根据 GB/T 24067-2024、GB/T 24040-2008、GB/T 24044-2008,本报告采用的取舍准则以<u>各项原材料投入占产品重量或过程总投</u>入的重量比 为依据,具体规则如下:

- (1) 在选定环境影响类型范围内的已知排放数据不应忽略;
- (2) 重量小于产品重量 1%的原辅料消耗可忽略,但总忽略的重量不应超过产品重量的 5%;
 - (3) 大多数情况下,生产设备、厂房、生活设施等可忽略。 公司 FG1957 钨钢破冠车针产品主要原辅料占比情况见下表:

序号	名称	占比
1	碳化钨棒	55.37%
2	焊料	0.74%
3	白油	41.86%
4	砂轮	0.95%
5	塑封包装	0.42%
6	纸板包装	0.66%

结合各项原辅材料占比与取舍原则,本报告将<u>原材料碳化钨棒、</u> 辅料白油纳入碳足迹计算。

3.4 时间范围

2024 年度

四、清单分析

4.1 数据来源说明

本项目采用生产商提供的实景数据、企业报告数据、产品和生产过程说明书、标准测算和浙江省碳足迹服务平台提供的工艺数据。

4.1.1 初级数据

- 1) 产品信息
 - a. 工厂基本信息;
 - b. 产品说明;
 - c. 制备流程工艺说明。
- 2) 主要原材料
 - a. 与产品各部分生产相关的所有原料投入。
- 3) 生产
 - a. 能源;
 - b. 资源;
 - c. 辅助原材料。
- 4) 运输信息
 - a. 产品系统边界生命周期过程中的厂内的运输重量, 距离等。

4.1.2 次级数据

本项目使用浙江省碳足迹服务平台、国家发展改革委应对气候

变化司公布的我国区域电网排放因子、中国产品全生命周期温室气体排放系数库、《陆上交通运输企业温室气体排放核算方法与报告指南》、《工业其他行业企业温室气体排放核算方法与报告指南(试行)》、GB/T24067-2024《温室气体产品碳足迹量化要求和指南》、GB/T 24040-2008《环境管理.生命周期评价原则与框架标准》、GB/T 24044-2008《环境管理生命周期评价要求与指南》、《GB/T1 煤的发热量测定方法》、《GB/T384 石油产品热值测定法》、《GB/T22723 天然气能量的测定》、《关于发布 2022 年电力二氧化碳排放因子的公告》进行研究计算。

4.2 分配原则与程序

复杂多样的多产品系统需采用合理的建模方法对整个系统的资源环境影响进行分配,从而得到主、副产品各自的环境影响。常见方法有分段法、物理化学性质分配法、经济价值分配法、系统扩展法(替代法)等。

本报告评价产品为 FG1957 钨钢破冠车针,生产中不产生副产品, 故而不进行碳足迹的分配与归集。

4.3 清单结果及计算

4.3.1 数据清单

通过公司收集 FG1957 钨钢破冠车针产品生产实际工艺数据后, 根据数据制作各阶段数据清单表,便于数据在碳足迹服务平台中进行 操作及相关标准的选择。

产品主要工艺为:采用铝型材为原料,进场后利用各类机加工设备对工件进行加工处理,最后返厂入库待用。

1) 原料:碳化钨棒。

- 2) 机加工:对头/柄件进行机加工处理。产生机加工废气油雾(以非甲烷总烃计)。
- 3)焊接:使用焊机将头部材料和柄部材料焊接。产生焊接颗粒物废气。
- 4) 机加工:对工件外形进行机加工处理,使用白油对工件进行 刀磨加工。产生机加工废气油雾(以非甲烷总烃计)。
 - 5)清洗:超声波清洗机洗去沾染的白油等。
 - 6) 质检、成品: 经质检合格后得到成品。

工艺流程见下图:

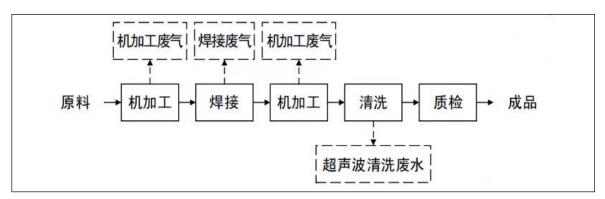


图 4-1 工艺流程图

4.3.2 碳足迹计算方式

产品碳足迹的计算公式为

$$CFP_{GHG} = \sum_{j} \left[\sum_{i} (AD_{i} \times EF_{LCA,i,j}) \times GWP_{j} \right]$$

式中:

CFP_{GHG}·产品碳足迹或产品部分碳足迹,以千克二氧化碳当量每功能单位或声明单位(kgCO_{2e}/功能单位或声明单位)计

AD: : 系统边界内,各功能单位(声明单位)中第 i 种活动的 GHG 排放和清除相关数据(包括初级数据和次级数据),单位根据具体 排放源确定

*EF*_{LCAL, T}:第 i 种活动对应的温室气体 i 的排放系数,单位与 GHG 活动数据相匹配。(其中,涉及电力的排放因子采用生态环境部最新发布的电力碳足迹因子,电力的碳足迹核算与 GB/T24067-2024 的 6.4.9.4 保持一致,电力排放因子选择依据 4.3.4.3.5 有关内容执行)

GWP: GWP 温室气体 j 的 GWP 值,根据 5.1 所述取值。 计算结果至小数点后四位。

根据企业数据统计及数据可获得性,本报告碳足迹计算分为三部分:

- 1) 原材料获取碳排放计算;
- 2) 产品生产过程的碳排放计算;
- 3) 运输阶段(包括原材料运输及产品厂内运输)碳排放计算。 即本报告中,产品碳足迹=原材料采购阶段碳排放量+生产阶段碳

$$CFP_A = \sum_{j} \left[\sum_{i} (AD_i \times EF_{ij}) \times GWP_j \right]$$

排放量+运输阶段碳排放量。

4.3.3 原材料采购阶段碳排放量

4.3.3.1 原材料采购阶段碳排放量计算方法

原材料获取阶段相关的碳排放的公式为:

式中:

CFP_A:产品原材料获取阶段的碳排放,以千克二氧化碳当量每功能单位或声明单位(kgCO2e/功能单位或声明单位)计

AD: 原材料获取阶段,第 i 种活动的温室气体排放相关数

据,单位根据具体排放源确定;

EF ; : 原材料获取阶段, 第 i 种活动对应的温室气体 j 的排放因子, 单位与温室气体活动数据相匹配。

GWP: GWP 温室气体 j 的 GWP 值,根据 5.1 所述取值。

4.3.3.2 原材料采购阶段碳排放量计算过程

一、活动数据及来源

表 4-1 产品原材料消耗量

年度	2024年
产品碳化钨棒消耗总量(t/a)	0.25
产品白油消耗总量(t/a)	0.66
数据来源	企业台账
监测方法	磅秤
监测频次	连续测量
数据缺失处理	无缺失

表 4-2 产品产量情况

	-
年度	2024 年
产品名称	FG1957 钨钢破冠车针
产品产量(个)	2019753

二、排放因子及来源

表 4-2 原材料排放因子

原材料排放因子				
数据来源	CPCD 数据库			
名称	单位 温室气体排放量(tCO ₂ e)			
碳化钨棒	1 吨	22.92		
白油	1 吨	3.2		

三、碳排放量计算结果

表 4-3 原材料采购阶段碳排放量

项目	购入量 (t)	排放因子(tCO ₂ e)	温室气体排放量(tCO _{2e})
碳化钨棒	0.25	22.92	5.7277
白油	0.66	3.20	2.1082
合计	0.91	_	7.8359

表 4-4 单位产品采购阶段碳排放量

产品名称	FG1957 钨钢破冠车针	
产品产量(个)	2019753	
单位产品采购阶段碳排放量(kg CO2/支)	0.0028	

综上所述,FG1957 钨钢破冠车针原材料采购阶段的碳足迹为 0.0028 kgCO_{2e}/支。

4.3.4 产品生产阶段碳排放量

4.3.4.1 产品生产阶段碳排放量计算方法

产品生产阶段相关的碳排放的公式为:

$$CFP_{B} = \sum_{j} \left[\sum_{i} (AD_{i} \times EF_{ij}) \times GWP_{j} \right]$$

式中:

CFP_B:产品制造阶段的碳排放,以千克二氧化碳当量每功能单位或声明单位(kgCO2e/功能单位或声明单位)计

AD: :制造阶段,第i种活动的温室气体排放相关数据,单位根据具体排放源确定;

EF ; 制造获取阶段,第 i 种活动对应的温室气体 j 的排放因子,单位与温室气体活动数据相匹配。

 GWP_i : GWP 温室气体 j 的 GWP 值,根据 5.1 所述取值。

产品生产阶段的主要排放源见下表:

表 4-5 主要排放源信息

排放种类	能源/原材料或产品	排放设施
化石燃料燃烧排放	/	/
净购入使用电力对应的排放	净购入电力消费量	各生产系统、辅助系统及 附属生产系统
净购入使用热力对应的排放	/	/

一、净购入电力隐含的 CO₂ 排放

1、计算公式

净购入的电力和热力隐含的 CO₂排放采用《核算指南》中的如下 核算方法:

$$E_{CO_2-\hat{p}e} = AD_{e,\uparrow} \times EF_{e,\uparrow}$$

式中:

 E_{CO_2-} 净电 为企业净购入的电力隐含的 CO_2 排放,单位为吨 CO_2 ; AD_{e} 力 为企业净购入的电力,单位为 MWh; \bullet

 EF_{e} 为 电力供应的 CO_2 排放因子,单位为吨 CO_2/MWh ;

2、活动水平数据获取

企业净购入电量数据以2024年能源购进发票与台账为准。

3、排放因子数据获取

电力排放因子根据宁波市星级绿色工厂评价导则(2024版)及国家生态环境部、国家统计局《关于发布 2022 年电力二氧化碳排放因子的公告》,电力排放因子为 0.5153 tCO2/MWh。

4.3.4.2 产品生产阶段碳排放量计算过程

表 4-2 外购电力的消耗量

全厂	数据项	净购入电力
----	-----	-------

	数据项	净购入电力
全厂	数值	560.70MWh
	数据来源	2024年公司购入电力的发票与台账
FG1957 钨钢	数值	50.38MWh
破冠车针产品 2024 年	数据来源	企业内部台账

表 4-3 产品生产过程净购入使用电力隐含的排放量

净购入使用 电力隐含的 排放	净购入量 (MWh/GJ)	购入量 (MWh/GJ)	外销量 (MWh/GJ)	净购入 CO ₂ 排放因 子(吨 CO ₂ /MWh, 吨 CO ₂ /GJ)	排放量 (t CO ₂)
	A=B-C	В	С	D	$E=A\times D$
电力	50.38	50.38	0.0000	0.5703	25.96

表 4-4 产品生产过程排放量

年度	2024 年
化石燃料燃烧 CO ₂ 排放量(t CO ₂)	0
净购入电力隐含的 CO ₂ 排放量(t CO ₂)	123.63
产品生产温室气体排放总量(t CO ₂)	123.63

表 4-5 单位产品生产过程排放量

年度	2024年
产品生产温室气体排放总量(t CO ₂)	123.63
产品产量(个)	2019753
单位产品生产温室气体排放总量(kg CO2/支)	0.0129

综上所述,FG1957 钨钢破冠车针生产过程的碳足迹为 0.0129kgCO₂/支。

4.3.5 运输阶段碳排放量

4.3.5.1 运输阶段碳排放量计算方法

产品生产阶段相关的碳排放的公式为:

$$CFP_{c} = \sum_{j} \left[\sum_{i} (AD_{i} \times EF_{ij}) \times GWP_{j} \right]$$

式中:

*CFP*_c:运输阶段(包括原材料运输及产品厂内运输)的碳排放,以千克二氧化碳当量每功能单位或声明单位(kgCO2e/功能单位或声明单位)计;

AD :运输阶段(包括原材料运输及产品厂内运输),第 i 种活动的温室气体排放相关数据,单位为百万千焦(GJ);

EF ; :运输阶段(包括原材料运输及产品厂内运输),第 i 种活动对应的温室气体j 的排放因子,单位与温室气体活动数据相匹配。

GWP: GWP 温室气体 i 的 GWP 值,根据 5.1 所述取值。

核算和报告期内消耗的第 i 种化石燃料的活动水平 AD_i 按公式如下:

$$AD_i = NCV_i \times FC_i$$

式中:NCV_i是核算和报告期内第 i 种化石燃料的平均低位发热量, 对固体或液体燃料,单位为百万千焦/吨(GJ/t);对气体燃料,单位 为百万千焦/万立方米(GJ/万 Nm³)

FC_i 是核算和报告内第 i 种化石燃料的净消耗量,对固体或液体燃料,单位为吨(t):对气体燃料,单位为万立方米(万 Nm³)。

化石燃料的二氧化碳排放因子按公式计算:

$$EF_i = CC_i \times OF_i \times \frac{44}{12}$$

式中: CC_i 为第 i 种化石燃料的单位热值含碳量,单位为吨碳/百万千焦(tC/GJ);

OFi 为第 i 种化石燃料的碳氧化率,单位为%。

2、甲烷和氧化亚氮排放量计算

$$E_{mhh-CH_4} = \sum k_{a,b,c} \times EF_{CH_4} \times GWP_{CH_4} \times 10^{-9}$$

 $E_{mhh-N,O} = \sum k_{a,b,c} \times EF_{N,O} \times GWP_{N,O} \times 10^{-9}$

其中:

K_{a,b,c}为核算和报告期内运输车辆的不同车型、燃料种类、排放标准的行驶里程,单位为千米(km);

EF 为甲烷或氧化亚氮排放因子,单位为毫克甲烷(氧化亚氮)千 $\Re (mgCH_4(N_2O)/km)$;

GWP_{CH4}和 GWP_{N2O}分别为 CH₄和 N₂O 的全球增温潜势。按 IPCC 第二次评估报告推荐的、在 100 年时间尺度下的数值,CH₄和 N₂O 转换成 CO₂ 当量计的 GWP 值分别为 21 和 310;

- a燃料类型,如柴油、汽油、天然气、液化石油气等;
- b 车辆类型,如轿车、其它轻型车、重型车;
- c 排放标准,如执行国 I 及以下、国 II 、国Ⅲ或Ⅳ V 及以上排放标准。

运输车辆综合燃料消耗量可通过下述来源获取:

- (1) 对于总质量超过 3500kg 的运输车辆,可根据车辆产品型号在交通运输部"道路运输车辆燃料消耗量监测和监督管理信息服务网"查询其综合燃料消耗量;
 - (2) 对于总质量未超过 3500kg 的运输车辆,可根据车辆产品型

号在工业和信息化部"中国汽车燃料消耗量网"查询其综合工况下燃料消耗量:

(3) 如无法查询到某型号运输车辆的百公里燃油量参数,可参考附录二表1中"货车各车型百公里能源消费统计表"缺省参数。

企业可参考相应《工业其他行业企业温室气体排放核算方法与报告指南(试行)》提供的单位热值含碳量和碳氧化率数据。

4.3.5.2 运输阶段碳排放量计算过程

一、活动数据及来源

表 4-6 原材料运输距离

N - 0 MIGHT INCHISELY		
数据项	原料运输距离(km)	
地点	仓库	
距离(km)	1232.71	
频次	3	
数据来源	由企业根据供应商位置估算	
合计运输距离(km/a)	3698.13	

表 4-7 原材料运输车型

数据项	原料运输	
车型	货车(柴油)	
数据来源	企业提供	

表 4-8 厂内运输距离

数据项	产品运输距离(km)	
地点	成品仓库	
距离(km)	0.45	
频次	28	
数据来源	企业根据成品仓库举例厂内距离及物流发货次数提供	
合计运输距离	12.60 (km/a)	

表 4-9 厂内运输车型

数据项	产品运输	
车型	货车(柴油)	
数据来源	企业提供	

二、排放因子及来源

表 4-10 运输阶段排放因子

百公里油耗及甲烷、氧化亚氮排放因子			
运输车辆	车辆排放因子		
货车(柴油)	百公里耗柴油 30.7 升		
数据来源	《陆上交通运输企业温室气体排放核算方法与报告指南(试行》		
气体种类	排放因子(mg/kg) 全球变暖潜势(GWP)值(tCO _{2e})		
CH ₄	175 21		
N ₂ O	30 310		
数据来源	指南 IPCC 第二次评估报告推荐		

三、计算结果

根据上述确认的活动水平数据,运输阶段碳排放量,结果如下:

表 4-11 运输阶段碳排放量

燃油	里程	每公里 油耗	密度	燃油 低位 热值	单位热 值含碳 量	碳氧 化率	CO ₂ 与 碳的分 子量比	温室气体 排放量
类型	km	L/km	t/L	GJ/t	tC/GJ	%	-	tCO ₂
	A	В	С	D	Е	F	G	I=A*B*C*D*E *F*G/100
柴油	3710.73	0.307	0.00073	43.33	0.0202	98	44/12	2.6155
气体	公里数	排放因	全球变暖 潜势值 (GWP)	/	/	/	/	温室气体 排放量
类型	km	mg/km	tCO2e					tCO2 e
	A	В	C					I=A*B*C*10-9
CH ₄	3710.73	175	21					0.0136
N ₂ O	3710.73	30	310					0.0345
	合计				2.6637			

表 4-12 单位产品运输阶段排放量

年度	2024 年
产品生产温室气体排放总量(t CO ₂)	2.6637
产品产量(个)	2019753
单位产品生产温室气体排放总量(kg CO2/支)	0.0013

综上所述,FG1957 钨钢破冠车针运输阶段(包括原材料运输及产品厂内运输)的碳足迹为 $0.0013~kgCO_{2e}$ 支

4.4 数据质量评价

本研究采用 FG1957 钨钢破冠车针产品生产企业宁波信远齿科器械有限公司的实际生产工艺数据、环境检测报告中的数据和物料及能源数据。FG1957 钨钢破冠车针产品生产过程中的所有相关步骤,及原辅料、产品的运输都已考虑在内并将进行模型的构建,能真实反映出实际的生产情况及对环境的影响,所有的生产过程与评价目的和范围一致。

初级数据,如生产制造的物料清单(BOM)由生产厂商及供应商直接提供,数据等级为实际现场值,数据质量高。

次级数据引用于本土化数据库、公开文献、国家排放因子、计算估算数据及其他具有代表性的数据,数据认可度高、可信度高。

五、影响评价

5.1 影响类型和特征因子化选择

本报告选择联合国政府间气候变化专门委员会 (Intergovernmental Panel on Climate Change, IPCC) 给出的 100 年全球变暖潜势 (global warning potential, GWP), 具体来源于 IPCC《气候变化报告 2021:自然科学基础第一工作组对 IPCC 第六次评估报告的贡献》。二氧化碳相关参考值见表 5-1.

表 5-1.部分 GHG 的 GWP 参考值

气体名称	化学分子式	100 年的 GWP 系数(截至出版时)
二氧化碳	CO_2	1
甲烷	CH ₄	27.9
氧化亚氮	N ₂ O	273
三氟化氮	NF ₃	17400

5.2 产品碳足迹结果计算

表 5-2.碳足迹计算表

项目	温室气体排放二氧化碳当量(tCO ₂ e)
原材料采购阶段的碳排放(tCO ₂ e/支)	0.0028
产品生产阶段的碳排放(tCO ₂ /支)	0.0129
运输阶段(包括原材料运输及产品厂内运输) 的碳排放(tCO2e/支)	0.0013
FG1957 钨钢破冠车针产品碳排放量 (kgCO2/支)	0.0170

FG1957 钨钢破冠车针产品的碳足迹为 0.0170 (kgCO_{2e}/支)。

六、结果解释

6.1 结果说明

宁波信远齿科器械有限公司生产的每个 FG1957 钨钢破冠车针,从"摇篮到大门"共分为三个阶段:包括原材料采购阶段、产品生产阶段、运输阶段(含原材料运输及产品厂内运输)的生命周期碳足迹为 245.21kgCO_{2e}。各生命周期阶段的温室气体排放情况如下表和下图所示。

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
生命周期阶段	碳足迹(kgCO ₂ e/支)	百分比
原材料采购阶段	0.0028	16.67%
产品生产阶段	0.0129	75.57%
运输阶段(包括原材料运输及产品厂内运输)	0.0013	7.75%
总计	0.0170	100.00%

表 6-1 产品生命周期各阶段碳排放情况

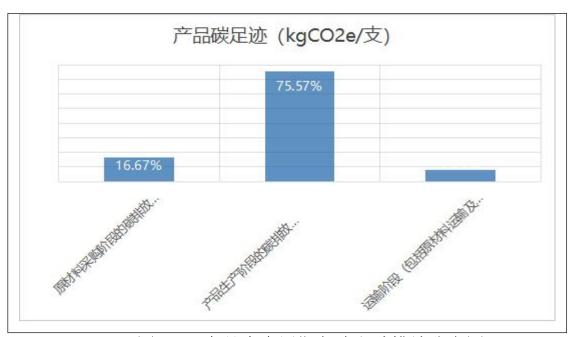


图 6-1 产品生命周期各阶段碳排放分布图

6.2 改进建议

- 1、建议利用本次机会,带动上游原、辅材料供应商开展 CFP 评价,将环境友好的理念贯彻于整个供应链中,降低产品全生命周期碳排放量。
- 2、根据研究可知,产品生产阶段对碳足迹贡献最大,占比达到75.57%,其次是原材料采购阶段,占比16.67%。公司可以通过优化生产工艺、完善细化物料和能耗消耗量的统计、优化能源结构、加强供应链碳排放管理、继续推进绿色低碳发展意识和产业链的绿色设计发展来降低产品的碳足迹。